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The U.S. Census Bureau Small Area Estimates Branch
(SAEB) is developing model-based estimates of the
number of people not covered by health insurance (i.e.
uninsured) at the state and county levels.  There are two
primary motivations for conducting this research.  First,
there is a broad public interest in health insurance
coverage issues.  The number of uninsured people in the
United States increased by roughly 10 million in the 1990s,
despite a strengthening economy.  With the failure of the
universal health insurance coverage movement in the
early 1990s, it became apparent that incremental policies
would be the path to follow for increasing coverage in the
populat ion.  In order to determine how to best target
certain populations that may have disproportionate levels
of non coverage, policy makers need to be able to
accurately identify these groups. 

Second, health insurance coverage is not an item on the
decennial census long-form questionnaire.  Additionally,
there is no comprehensive administrative records system
that tracks all types of coverage.  Thus, estimates of
health insurance coverage necessarily come from much
smaller household surveys. The costs of a survey that
would be large enough to produce direct sub-state
estimates of health insurance coverage are prohibitive,
and the logistics formidable, necessitating model-based
methods to derive estimates for these geographic areas.

Recent methodological developments, at both the U.S.
Census Bureau and in the broader research community,
offer new potential for producing model-based estimates
of interesting populations in small domains.  SAEB has
played a significant role in this field, developing a
program, Small Area Income and Poverty Estimates
(SAIPE), that produces income and poverty estimates at
the state, county, and school district levels. SAIPE

constructs statistical models that relate income and
poverty to various indicators based on administrative
records and decennial census data.  These are then
combined with direct estimates from the Current
Population Survey (CPS) to provide model-based
estimates, and the associated standard errors.  The
SAIPE estimates are used by the Departments of
Education and Health and Human Services, and were
evaluated favorably by the Panel on Estimates of
Poverty for Small Geographic Areas of the National
Academy of Sciences.

The work discussed in this paper is an initial attempt
to expand SAIPE knowledge and methodologies to
the area of health insurance coverage.  Our immediate
focus is to develop state level estimates of the
following:

· Low Income Children (LIC):  the number of
children (0-18) who are in families with incomes
at or below 200% of the federal poverty level
(200% FPL); and

· Uninsured Low Income Children (UILIC): the
number of children (0-18) who are in families with
incomes at or below 200% of the federal poverty
level (200% FPL), and do not have health
insurance.

Our motivation for choosing these groups is multi-
faceted.  First, this is a natural extension of SAIPE's
work, given the focus on poor children.  Second,
these two numbers are of great interest to researchers
and public program administrators alike, particularly
given the passage of the State Children's Health
Insurance Program in 1997, which uses the 3-year
average direct estimates from the CPS Annual
Demographic (March) Supplement for allocating
funds.  Finally, given that state-level estimates from
the CPS are the primary source for estimates, this



allows us some uniform basis for comparison with which
to evaluate our estimates.

In future work we anticipate expanding our methodology
to provide estimates of the uninsured for the total
population, children (0-17 years), working-age adults (18-
64 years) and the elderly (65+ years) at the state and
county levels.

2. Models

Recently, there have been several approaches to the
estimation of health insurance coverage in small areas, as
well as active research in estimation for small areas
generally.  Lazarus et al (2000) use the Florida Health
Insurance Study, matched to block-level demographic
attributes to estimate uninsured rates by county in
Florida. They used a neural net, taught by a genetic
algorithm, to fit a function from a very flexible set of
functions to the uninsured rates in the counties in Florida.
They selected just three predictors as input for their
neural net: Area of Block group, Median Age, and Median
Household Income.  Their results have estimates for every
county, but there are no estimates of standard errors  (SE).
Popoff et al (2001) use a logistic regression model to form
estimates of  uninsured rates for the cells of a table made
from age/race/sex/hispanicity (ARSH) values. Brown, et
al  (2001) estimate insurance coverage for Californians by
regressing CPS direct estimates on known population
variables.

This problem has a lot in common with the estimation of
poverty for states and counties produced by the SAIPE
project at the Census Bureau.  See NRC (2000) for
descriptions and evaluations of these statistics.  For
counties, they model the log number of poor in a mixed
linear model with administrative records data, including
tax data, food stamps program data, data from the
decennial census, and an estimate of population.  For
states, they model the poverty ratio (the number of poor
divided by an estimate for the population) using similar
predictors.  In each case, a mixed linear model was fit to
the transformed  poverty measure with the administrative
records data. The general model form is that of a
generalized linear model.  These estimators are shrinkage
estimators and rely on an assumption of normality.  Other
approaches have been presented by Slud (2000) and
Fisher and Asher (1999).   

The approach in the SAIPE county model recognizes the
uncertainty of demographic population estimates. The
estimated proportion poor needs to be multiplied by  the

population estimate to get the number of poor; since
that estimate has some unknown but potentially
nontrivial variability of its own, it contributes to the
mean squared error (MSE) of the final estimate.  The
approach of estimating the log number of poor
directly avoids this difficulty.  In our problem, as in
Bell’s, we have the advantage that the population
estimates at the state level are presumably more
reliable, so we estimate proportions.  In particular, we
measure the LIC rate, defined as LIC/(population 0-18
years of age), and the UILIC rate, defined as
(UILIC)/(population 0-18 years of age). 

The LIC and UILIC rates are modeled as hierarchical
linear models like the models used in the SAIPE
program.  In the SCHIP problem, our research
indicates that the available covariates are not as
useful for predicting UILIC rates as they were for
estimating poverty. To use as much information as
we have available, we model 1999 LIC and UILIC
rates using 1995 - 1999 data.  This way we use
information ("borrow strength") across time as well
as across space.  This requires extra modeling of the
correlations of the various error terms among the
years in the model and more consideration of the
structure of the model to reflect what must b e  a
changing world.

The model for either the LIC rate or the UILIC rate for
state i is

Y X ui i i i= + +β ε

where   is a 5-dimensional vector of someYi

transformation of  rates measured by CPS, one

element for each of the 5 years,   is a matrix ofXi

covariates,   is a 5-dimensional multivariateui

normal random effect with a first-order autoregressive

covariance matrix and constant variance , and  vu ε i
is a 5-dimensional multivariate normal vector of
sampling errors with a first-order moving average
correlation matrix and where the variance each year is
proportional to the CPS sample size that year, with

constant of proportionality .  As with SAIPE, thevε

covariates consist of data from administrative tax and
food stamps records, as well as race and ethnicity
indicators from the decennial census.  In addition, we
utilize employment indicators from County Business
Patterns.  (The CPS shows that health insurance
coverage is related to age, race/ethnicity, and



employment; see Mills 2000).

The first order moving average structure of the sampling
error term is driven by an assertion by the Census Bureau
and the Bureau of Labor Statistics (2001) documentation
that the sampling error correlation is zero for sample
separated by more than one year.  Also, the current form

of the model  has  constant across years.  If theβ
relationship between the predictors and the rates of
interest changes, this assumption is violated.  These are
items for further study.

3. Estimation

We estimate the models in each of two ways.  The first  is
to use maximum likelihood to estimate the parameters,
then form the estimated best linear unbiased predictor
(EBLUP).  SAS has a procedure designed to do this
estimation.   Estimates of standard errors are important,
however, and SAS has not implemented the second-order
approximation, so the variances are biased downward.
This method has the advantage of being fast.

The second way is to use a Bayesian method  and get
posterior moments for the rates of interest, given the data.
 The prior distributions are as follows.

C p( )β ∝ 1

C p vu I( ) ( , . )∝ 0 01
C p v I( ) ( , )ε ∝ 0 100

Both correlation paramet ers have the prior .U ( , )−11
These priors were chosen to be somewhat
noninformative, and the posterior variances are much
smaller than the prior variances (Fisher and Campbell,
2002).  These priors are proper, ensuring posterior
propriety. Note that the choice of prior distributions in
models meant for official statistics and which are meant to
be usable for the allocation of Federal funds may be
problematic.

This method has been implemented using a Metropolis-
Hastings (MH) algorithm. We expect to try  variations on
the models in the future, so we use a flexible form of the
MH algorithm with an explicit definition of the joint
posterior as a subroutine and a one-variable-at-a-time
update scheme. Changes in the model are easily
programmed and tested, since the full conditional
distributions need not be derived. 

For Bayesian estimation of the parameters, the
random effects were integrated out and the MH
algorithm was run for 1,000,000 iterations to sample

from the distribution of . We thinβ ε, , |V V yu
this sample by taking every 100th iteration to save
storage and time on the subsequent random-effect
generating step.  Given this thinned sample, we

sample by generating a value ofu y V Vi i u| , , , ,β ε

for each value of the parameters. ui

We check the model fit in the Bayesian procedure
using the method of posterior predictive p-values
(See, for example, Gelman, et al, (1995)).  To use this
method, define a discrepancy function of observed
and hidden variables, , where is theT( , )y θ y
vector of  observed variables and  is a vector ofθ
hidden variables.  Let the superscript rep represent a
replication from the MH simulation.  In a well-fitting
model, 
                                                         

P T Trep rep obs rep( ( , ) ( , ))y yθ θ<

should not be too close to 0.0 or 1.0. Useful forms for
T are 

· . T y T y yi( , ) ( )θ = =
This gives a test for over- or under-estimation of the
means.   

· ,T y yi i( , ) ( )θ µ= − 2

where This gives a test  forµi i i= +X u .
systematic over- or under- estimation of the sampling
error variances.  We also calculate and plot the p-
value for each observation to detect systematic
trends in either the locations or variances of the
estimates. 

4. Variable selection, Model Fit, and Results

The selection of the variables and the model form
were guided by the log-likelihood and the Akaike
Information Criterion, along with plots and theoretical
considerations.  

We consider two transformations for the rates
besides the rates alone: the log and the logistic
transformation.  For several promising sets of
predictors, including the final selection of variables,
we fit the models and examined plots of standardized
residuals.  In each case, the standardized residuals



for the rate model appears more like a normal distribution
than either of the transformed models. The other models
have visible skewness.

The ML estimate for the model error variance in the UILIC
model was lower than its posterior mean and was actually
zero in the LIC model. The ML estimate of a variance
component can be zero or, more generally, highly skewed.
 The posterior mean may give more reasonable results;  in
particular, it avoids the situation where an estimated
variance component is zero.  See Bell (1999) for another
example.

In this application it is interesting to note that the Census
and the Bureau of Labor Statistics (2001) estimates the
single-year-lag sampling error correlation as 0.45 for both
of these variables.  The ML estimate and posterior mean
for this correlation for the UILIC rate are 0.18 and 0.16,
respectively.   The ML estimate and the posterior mean for
the correlation for the LIC rate are 0.37 and 0.34,
respectively.  The Census/BLS estimate is meant for
several variables and the UILIC rate may not be typical.

For the UILIC rate model, the mean posterior predictive p-
value for each of the discrepancy functions are close to
0.48, which fails to indicate problems with the model. Plots
of the p-values versus sample size and the regression
variables failed to show any systematic failures in the
mean portion of the model, though there did seem to be
some evidence that there is a small tendency to
underestimate the variance for places with more sample.

T h e  m e a n  p o s t e r i o r  p r e d i c t i v e  p - v a l u e

for  for the  LIC model was about 0.50.T y yi( , )θ =

For the mean p-value was closeT y yi i( , ) ( )θ µ= − 2

to 0.50, though plots of these p-values versus the sample
size measure once again seem to indicate a tendency to
underestimate variance for places with larger sample.  

We have not used an external variance estimate as in Fay
and Herriot (1987), but we do have the CPS generalized
variance function available.  Its reliability for estimation in
this context  is not established, so we estimate the
variance from the model.  We use the generalized variance
functions (GVFs) to validate the model-based estimates of
sampling error variances for UILIC by calculating the
posterior predictive p-value 
                                                      

P yi
rep

i
rep

GVFi(( ) )− ≤µ 2

for every state i. The overall predictive p-value is

approximately 0.54, which seems to indicate that the
GVF gives similar variance estimates overall.  Plots of
this p-value versus the population and the samp le
size indicate that larger places with larger sample
sizes have large GVFs compared to the variances
estimated in the model.  It is reassuring that the
overall variance estimate from the model agrees with
the estimate from the GVF, and that the type of
misspecification indicated by the posterior predictive
p-value seems consistent with the discrepancy from
the GVF.  We expect to try the straightforward
inclusion of the GVF into that variance model and to
use the HB methods to test it. 

Figure 1 shows the estimate for the three methods,
each plotted against rank of the UILIC rate.  Figure 2
shows the estimated coefficients of variation (CVs)
for the three methods.  Each of the methods
considered here have smaller CVs than the CPS three-
year average and  the Bayesian procedure has the

smallest.  The ML estimate of is very close tovu

zero, however, which may lead to unrealistic
estimates of variance for the EBLUPs. 

5.  Conclusions and Future Work

In this paper, we present hierarchical Bayesian and
EBLUP procedures for the estimation of UILIC and
LIC rates, which can straightforwardly be used to
obtain estimates of the numbers of children in the
two categories.  These estimators use information
across geography and time to “borrow strength” to
improve the estimates.  There are several points
where further research is needed before these models
are adequate for use to produce official estimates.
Notable examples include the covariance models
including the resolution of the discrepancy between
the modeled variances and the CPS GVFs and the
sampling error correlation for lags greater than zero.
Further, in this work we  use a model where
regression coefficients are constant for the years in
the sample; it would be useful to examine the
possibility of allowing them to vary across years.

As mentioned earlier, SAEB recognizes the demand
in health insurance estimates for state and sub-state
areas.  Beyond the scope of this paper, and the
narrowly defined group of low income children, we
hope our research will result in methodologies that
allow us to produce a broader set of health insurance
estimates.  We imagine estimates of children ages (0-
17), working-age adults (18-64) and the elderly (65+)
for states and counties, and potentially additional



groupings that may be of interest as a general product or
to particular sponsors.
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